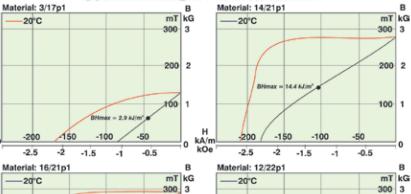
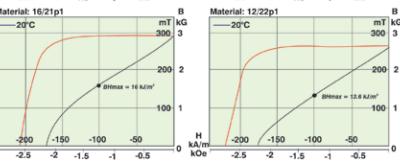
Injection-Molded Ferrite

- Ideal for large production runs
- May be molded into complex shapes
- May be molded onto shafts or be attached to other components
- Tolerances as tight as 0.01 mm
- · Impact and chemical resistant
- Energy Products to 16 kJ/m3 (2 MGOe)
- Isotropic and Anisotropic Grades
- Neodymium hybrids can increase performance
- Co-Injected Assemblies

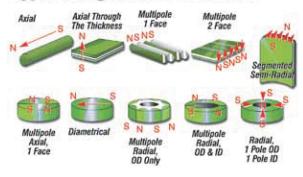




Typical Properties of Injection-Wolded Ferrite

Property	Units	3/17p1	12/22p1	14/21p1	16/21p1	14/22p2
Energy Product	kJ/m³	2.9	12	14.4	16	14.4
BH _{MAX}	MG0e	0.36	1.5	1.8	2	1.8
Remanence	mT	130	260	278	287	275
B _r	Gauss	1300	2600	2780	2870	2750
Coercivity	kA/m	86	175	179	179	187
H _c	Oe	1080	2200	2250	2250	2350
Intrinsic Coercivity	kA/m	173	225	215	207	223
H _{ct}	Oe	2170	2830	2700	2600	2800
Temperature Coefficient of B, (20 - 70°C)	%/C	-0.2	-0.2	-0.2	-0.2	-0.2
Temperature Coefficient of H _s (20 - 70°C)	%/C	0.3	0.3	0.3	0.3	0.3
Maximum Operating Temperature T _{MX}	°C	140	150	150	150	120
Permeability	"T/ _{Mm}	1.45	1.3	1.3	1.3	1.3
	G/Oe	1.15	1.05	1.05	1.05	1.05
Density	g/cm³	3.4	3.4	3.5	3.6	3.4

Typical Demagnetization Curves



Magnet Applications' injection-molded Ferrite offers design engineers near limitless shape and magnetization possibilities. Its high tensile strength allows injection-molded components to withstand high rotational forces, and it offers both excellent chemical and impact resistance. Isotropic grades can be magnetized in any direction: axial, radial or multi-polar. Anisotropic grades are magnetically oriented in a preferred direction during the molding process, and offer higher energy products.

Additionally, we have had success with new hybrids of Neodymium Iron Boron and Ferrite, offering our customers an even broader range of choices.

We offer complete engineering assistance, prototyping services, fabrication and inventory stocking. Call our sales staff today to discuss your application.

Typical Magnetization Patterns

